RESSLab Resilient Steel Structures Laboratory

Steel Structures, Selected Chapters, Fall semester, SGC, M1 & M3

EXERCISE BAT5: COMPOSITE COLUMN

Data

Let us consider a composite column located in a bus parking lot located under a building, the section of which is shown below. It consists of a HEA 140 profile embedded in reinforced concrete.

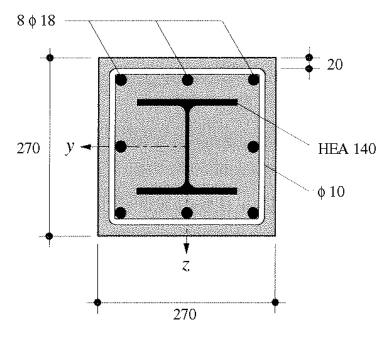


Figure 1 - Composite Section

This column is loaded by a normal N_{Ed} force of 1.5·10³ kN and by a $Q_{shock,Ed}$ impact load of 60 kN applied at mid-height of the column and perpendicular to the weak axis of the section.

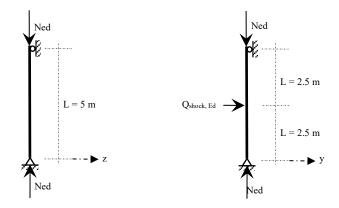


Figure 2 – Static System and Loads

26.10.2024/AN 1/2

The material properties are given in the following table:

HEA 140	S 235	$f_y = 235 \text{ N/mm2}$	$E_a = 210 \cdot 103 \text{ N/mm}^2$
Concrete (η _{fc} =1.0)	C 40/50	$f_{ck} = 40 \text{ N/mm2}$	$E_{cm} = 40 \cdot 103 \text{ N/mm}^2$
			$E_c = 20 \cdot 103 \text{ N/mm}^2 \text{ (see note)}$
Longitudinal reinforcing bars	B500B	$f_{sk} = 500 \text{ N/mm2}$	$E_s = 210 \cdot 103 \text{ N/mm}^2$

Table 1 – Material Properties

Questions

- 1.1 Determine the design resistance value of the composite column to normal force and verify the structural safety of it for the load case *live load* (without impact). Also check that the normal force can be be introduced at the column extremity.
- 1.2 Check this column with an M-N interaction for the accidental load case *shock*, $N_{Ed,concomitant} = 762$ kN. Do not forget to check V and the introduction of the transverse load.

Note: for long-term effects, one can find a modulus more favorable than $Ec = E_{cm} / 2.5$ using the formula of SIA 264 § 5.3.2.9 with the following assumptions: $\varphi = 2$ and $N_{G,Ed}/N_{Ed} = 0.5$, which gives:

 $E_c = E_{cm} / 2 = 20 \cdot 10^3 \text{ N/mm}^2$

26.10.2024/AN 2/2